This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Home » Confronting Biothreats in Drinking Supplies
April 8/Food Business Week -- "Deliberate or accidental contamination of foods such as milk, soft drinks, and drinking water with infectious agents or toxins is a major concern to health authorities. There is a critical need to develop technologies that can rapidly and efficiently separate and concentrate biothreat agents from food matrices," U.S. investigators report.
"A key limitation of current centrifugation and filtration technologies is that they are batch processes with extensive hands-on involvement and processing times. The objective of our studies was to evaluate the continuous flow centrifugation (CFC) technique for the rapid separation and concentration of bacterial spores from large volumes of milk. We determined the effectiveness of the CFC technology for concentrating similar to 10(3) bacterial spores in 3.7 liters (1 gal) of whole milk and skim milk, using Bacillus subtilis, Bacillus atrophaeus, and Clostridium sporogenes spores as surrogates for biothreat agents. The spores in the concentrated samples were enumerated by using standard plating techniques. Three independent experiments were performed at 10,000 rpm and 0.7 liters/min flow rate. The mean B. subtilis spore recoveries were 71.3 and 56.5% in skim and whole milk, respectively, and those for B. atrophaeus were 55 and 59.3% in skim and whole milk, respectively. In contrast, mean C sporogenes spore recoveries were 88.2 and 78.6% in skim and whole milk, respectively," wrote R. Agoston and colleagues, Texas A & M University.